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A note on symmetric functions
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Australia

Received 10 September 1996

Abstract. We give the power-sum symmetric functions in terms of theQ-functions with spin
character coefficients.

1. Introduction

The symmetric groupSn has a two-value representation (forn > 4) known as the spin
representation. The spin representation matrices form a new group, the spin group0n of
order 2.n!. Corresponding to each element ofSn there are two elements of0n. We disregard
those same characters of0n and the remaining characters of0n are calledspin characters.

Schur [7] introduced the spin characters in 1911 as ‘characters of the second kind’ in his
well known paper on the projective representations of the symmetric group. Since then much
work has been done on the development of the theory of symmetric functions in conjunction
with the ordinary representations. Similar results for the projective representations have not
come as easily. A recent monograph by Hoffman and Humphreys [1] is devoted entirely to
projective representations of the symmetric functions and gives a self-contained account of
the algebraic theory ofQ-functions. Spin characters play a key role in the developing area
of Q-functions. These types of symmetric functions are useful in areas of physics such as
nonlinear wave theory, where spin characters provide the coefficients for the solutions of
certain types of soliton equations [6].

2. Preliminaries

A partition λ is a finite (or infinte) sequence of non-negative integers

λ = (λ1, λ2, . . . , λd)

arranged in descending order

λ1 > λ2 > λd > 0.

The componentsλi of the partitionλ are calledparts, and the number of parts in a
partitionλ is called thelength and is denotedl(λ). The number of occurrences of a partλi

in a partitionλ is called themultiplicity of λi in λ and is denotedmλi
(λ).

We will denote byZ the integers and byQ the rationals.
The symmetric groupSn acts on the ringZ[x1, x2, . . . , xn] of polynomials with integer

coefficients by permuting the variables. An elementf (x) from the ringZ[x1, x2, . . . , xn]
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of polynomials is said to besymmetricif it is invariant under the action of the symmetric
groupSn. The set of symmetric polynomials forms a sub-ring

3n = Z[x1, x2, . . . , xn]Sn

of the ringZ[x1, x2, . . . , xn] of polynomials.
This ring λn of symmetric polynomials is graded. That is

3n =
⊕
k>0

3k
n

where3n
k is the group of the homogeneous symmetric functions of degreek in n variables,

including the zero polynomial. In the theory of symmetric functions it is often more
convenient to work in infinitely many variables. To this end, we define the group3k

by the inverse limit:

3k = lim←n
3k

n.

The graded ring of symmetric functionsis defined as

3 =
⊕
k>0

3k.

There are various classical symmetric functions: elementary symmetric functions;
monomial symmetric functions; complete symmetric functions; power-sum symmetric
functions; Schur symmetric functions. Here we are only concerned with the power-sum
symmetric functions.

The rth power-sum symmetric functionis given by

pr(x) =
∞∑
i=1

xr
i (r > 1)

p0(x) = 1.

The power-sum symmetric function is multiplicative. That is

pλ = pλ1pλ2 · · ·pλd

for any partitionλ = (λ1, λ2, . . . , λd).

Proposition 1 [4]. The power-sum symmetric functions form aQ-basis for the graded
ring of symmetric functions. That is, the power-sum symmetric functions are algebraically
independent overQ and

3Q = Q[p1, p2, . . .].

We now turn our attention to Hall–Littlewood polynomials, first defined (indirectly) by
Philip Hall in terms of the Hall algebra, and then directly by Dudley Littlewood in his paper
‘On certain symmetric functions’ which appeared in 1961. These functions are defined in
the ring3[t ] of symmetric functions with coefficients inZ[t ].

The Hall–Littlewood polynomialsare defined by

Pλ(x1, . . . , xn; t) =
∑

ω∈Sn/Sλ
n

ω

(
x

λ1
1 , . . . , xλn

n

∏
λ1>λj

xi − txj

xi − xj

)
whereSλ

n is the subgroup of permutationsω ∈ Sn such thatλw(i) = λi . The Hall–Littlewood
polynomials are symmetric inx1, . . . , xn with coefficients inZ[t ].

Again we pass to the limit and define theHall–Littlewood functionsPλ(x; t) as the
elements from the ring3[t ] whose image in3n[t ] for eachn > l(λ) is Pλ(x1, . . . , xn; t).
When t = 0 these symmetric functions correspond with Schur symmetric functions.
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Proposition 2 [4]. The Hall–Littlewood functionsP(x; t) are algebraically independent
over Z[t ] and form aZ[t ]-basis for the ring3[t ].

The Q-functionsQλ(x; t) are defined as scalar multiples of Hall–Littlewood functions
as follows:

Qλ(x; t) = bλ(t)Pλ(x; t)
where

bλ(t) =
∏
i>1

ϕmi(λ)(t)

and

ϕr(t) = (1− t)(1− t2), . . . (1− tn).

We are only concerned with the case whent = −1, as this gives rise to spin
characters [1]. It is easy to see that in this caseϕr(−1) is non-vanishing only forr = 1.
That is, for theQ-functionsQλ(x;−1) we are only dealing with partitionsλ with distinct
parts.

We now defineHall–Littlewood complete symmetric functionsqr in terms of Hall–
Littlewood functions:

qr(x; t) = (1− t)Pr(x; t) (r > 1)

q0(x; t) = 1.

Finally, for any partitionλ we define

zλ(t) = zλ

∏
i>1

(1− tλi )−1

where

zλ =
∏
i>1

imi
.mi !.

3. Results

MacDonald [4] gives the relationship between theQ-functions and the power-sum
symmetric functions:

Qλ(x; t) =
∑

ρ

z−1
ρ (t)Xλ

ρ(t)pρ(x) (1)

whereXλ
ρ(t) is the transition matrix between the power-sum symmetric functionspρ(x) and

the P -functionsPλ(x; t).
We wish to express power-sum symmetric functions in terms ofQ-functions with spin

character coefficients.
From Morris [5] and Hoffman and Humphreys [1] we have

Qλ(x; t) =
∑

ρ

2
1
2 (l(λ)+l(ρ)+ε) hρ

h
ζ λ
ρ Sρ (2)

where hρ denotes the order of the class ofρ, h denotes the order of the irreducible
representation0λ, the Sρ are the transitions which generate the symmetric group,ζ λ

ρ is
the spin character of the classρ in the irreducible representation0λ, and ε = 0 or 1
appropriately (that isε = 1 whenl(λ)+ l(ρ) is odd).

It is well known that the classρ is an odd part partition and the irreducible representation
0λ is in a distinct part partitionλ.
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Lemma 3.

Qλ(x;−1) =
∑

ρ

z−1
ρ (−1)2

l(λ)− l(ρ)+ ε

2
ζ λ
ρ pρ(x) (3)

Proof. Morris [5] states a formula forqr first given by Schur [7]:

qr(x;−1) =
∑

ρ

hρ

h
2l(ρ)Sρ(x). (4)

Stembridge [8] shows that

qr(x; t) =
∑

ρ

z−1
ρ (t)pρ(x).

We are interested in the case whenρ is an odd part partition andt = −1 and in this case
we have

z−1
ρ (−1) = z−1

ρ 2l(ρ).

Hence

qr(x;−1) =
∑

ρ

z−1
ρ 2l(ρ)pρ.

It now follows that
hρ

h
Sρ = z−1

ρ pρ.

Substituting into equation (2) completes the proof. �
Corollary 4.

Xλ
ρ(−1) = 2

l(λ)− l(ρ)+ ε

2
ζ λ
ρ . (5)

Proof. This result follows directly from equation (1) and lemma 3. �
With this corollary, some algebraic manipulation and the observation that whent = −1

we havebλ = 2l(λ) we come to the main result.

Theorem 5.

pρ(x) =
∑

λ

2−
1
2 (l(ρ)+l(λ)+ε)ζ λ

ρ Qλ(x;−1).
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